
Messaging
Layer Security
Past, Present, and Future
Richard Barnes

WSM 2019, Darmstadt, DE

1

2

Past
3

Context
Lots of secure messaging apps

Some use similar protocols…

… some are quite different

… but all have similar challenges

Wildly different levels of analysis

Everyone maintaining their own libraries

4

In the beginning...

5

Industry/academic collaboration on TLS 1.3
What’s the next thing?
A spec for secure messaging might be useful...

Groups are hard with libsignal
What about trees?

https://eprint.iacr.org/2017/666.pdf

!

6

2015

...

Things Start to Come Together

2017 2018 2019

September 2017
MLS Workshop #1

November 2017
MLS Workshop #2

January 2018
MLS Workshop #3

Vendors + Academics

How does your stuff work right now?

What works well / poorly?

What should we try to fix collaboratively?

=> 2 full whiteboards of requirements...

7

Top-Level Goals
Detailed specifications for an async group messaging security protocol

Async - No two participants online at the same time
Group - Support large, dynamic groups
Messaging security - Modern security properties (FS / PCS)

Code that is reusable in multiple contexts...

… and interoperable between different implementations

Robust, open security analysis and involvement from the academic community

8

Long-Tail Goals
● Delivery acks and nacks/retries
● Recovery from state loss
● Resilience against intermittent message loss
● Support "identity key per device" model (vs. "sync identity key across devices")
● Avoid leaking the number of devices per user
● Add device when offline (new phone, old phone dead)
● Culling old devices
● History/history integrity

… and several more

9

MLS vs. TLS
Lots of actors - 2 vs. 10N

Long lived sessions - seconds vs. months

Lots of mobile devices involved

… each of which is involved in multiple long-lived sessions

Significant probability that some member is compromised
at some time in the life of the session

10

Endpoint
Compromise

Time

Forward Security* Post-Compromise Security*

FS / PCS Interval

* … with regard to a participant 11

Prior Art
mpOTR, (n+1)sec No PCS

S/MIME, OpenPGP Linear scaling, difficult to achieve PCS

Client fanout Linear scaling, but good async / PCS properties
Signal, Proteus, iMessage, et al.

Sender Keys Linear scaling, PCS possible but very expensive
WhatsApp, FB, OMEMO, Olm, et al.

Goal: FS/PCS with sub-linear scaling as much as possible
12

Create Add Update Remove Message

N^2 10,000,000

N 10,000

log N 14

1 1

Client Fanout Sender Keys MLS-05
13

Digression:
Enterprise E2E

14

Digression: Enterprise Requirements
Good News:

Strong motivations to deny messaging
provider access

Customer organization can operate
some infra independent of provider

… for example, identity/SSO systems

Less-Good News:

Large, centrally managed groups

○ E.g., “everyone in Finance”
○ Central control tied to HR

Compliance requirements that require
plaintext: recording, discovery, DLP,
etc.

15

Intermediate Solution: Trusted Infra
Webex Teams provides a kind of E2E by
splitting having the customer
organization operate a key server

Clients for that organization get keys
from that server, and everything Webex
sees is in ciphertext

Ditto for other services that need
plaintext: Search indexing, document
previews, etc.

16

Motivations for more P2P E2E
“Why am I buying a cloud service if I still have to run a server?”

Whoever runs the key server is trusted with all of the customer org’s content, so no
compartmentalization for executives, lawyers, security researchers, etc.

Passing around keys encourages more complex application architectures

Forward Secrecy / Post-Compromise Security need to be added manually

17

Present
18

TLS -> MLS

Bob AliceServerHello, Certificate, CertVerify, Finished

ClientHello

Certificate, CertVerify, Finished

Welcome + Add

UserInitKey

UserInitKey = Authenticated client capabilities + key share

1xRTT instead of 1.5xRTT enables ✨asynchronous operation✨
19

Add

Bob Alice

Charlie Dana

UserInitKey UserInitKey

Welcome

Add Add

AddAdd

20

Update / Remove / Synchronization
Update and Remove messages are just
broadcast to the whole group

All messages must be received in the
same order by all clients

Need for locking / fail+resend

Welcome needs to fate-share with Add

Unlike sender keys / client fan-out, one
message to the whole group

Alice

Charlie Dana

Bob

21

MLS Internals
TreeKEM establishes shared secrets
that make it easy to send a key to all
but one member

The Key Schedule combines the
secrets from TreeKEM into a common
history of the group

The Authentication layer attests to
sender identities and confirms
agreement on the state of the group

TreeKEM

Key Schedule

Authentication

22

Tree

Epoch
Secret

Application
Secret

Protocol
Messages

23

Each node in the tree either contains a
key pair or is marked “blank”

Each member “occupies” a leaf node

Private keys follow the tree invariant:

The private key for a node in the tree is
known to a member of the group if and only if
that member's leaf is a descendant of the node
or equal to it.

Trees of Keys

A B C D E F G H

C has private keys for green nodes
24

This has a couple of nice consequences:

Intermediate nodes represent
subgroups you can DH with / encrypt
to

Root private key is a secret shared by
the members of the group at a given
time

Protocol maintains this state through
group operations (Add, Update, Remove)

Trees of Keys

A B C D E F G H

C has private keys for green nodes
25

The KEM in TreeKEM
For Update and Remove, you want to send
fresh entropy to all but one member

Update: Old version of self
Remove: The evicted member

To simultaneously encrypt new entropy
and update the tree in O(log N):

Derive from hashes up the tree
Encrypt the hash to the other child

f = H(d)

h = H(f)

a b c d

26

Protocol
Messages

Update
The Tree

Add:
Add leaf to the tree
Group hashes forward
Encrypt secret to new joiner

Remove / Update:
Encrypt fresh entropy to everyone
but the evicted participant

27

Future
28

Trade-Offs

Avoiding
Double-Join

TreeKEM +
Blank nodes

Linear-size state in
clients

Log-size KE
messages

Shared group
state

State corruption by
malicious insiders

Constant-time
Add

“Warm up time”
after creation

Strict message
ordering

Constant-size
app messages

29

Worry / Wonder / Hope
Worry: Overhead / efficiency

Worry: Malicious insiders

Wonder: Transport interactions

Hopeful: More applications

Hopeful: Grand Unified theory?

30

Overhead: The Good News
We’re doing better than the state of the art!

K * N
[K = cost of 1-1 channel]

O(N + log N)

31

Overhead: Less Good News
Group stuff is inherently kind of expensive (signatures!)

For contrast: There is active debate about whether TLS is small enough for IoT

Theoretical minimum TLS handshake: 64 / 177 / 113 bytes

Proposed alternative [EDHOC]: 39 / 120 / 85 bytes

Min MLS Welcome: 205 bytes = DH key + Sig key + 2x 32B secrets + framing

Application message overhead: 125 bytes = Sig + tag + nonce + tag + ...

… vs 21 bytes for TLS = Auth tag + framing

32

https://tools.ietf.org/html/draft-selander-ace-cose-ecdhe-11

232df8e2251ec383eda58ca3cc0d2f7d5278f29edafa202a86
5637d7389a3708c463cbad67d9d438ccdb5e117241912172e4
4175c627450a09c8221ede96ad9a649d10f53d368f89b2bc08
4add2af538af3544a4564dddab09a3f9584113c4122c8417a1
9d28a5d4b9ece9a960fa9780f7cee204707b8337f747446081
8866ba0c

💸💸💸

“💩”4-byte content

101-byte message

… millions of users ...
33

Overhead: Open Questions
To what degree are the message sizes necessary vs. engineering-induced?

Can the protocol be re-encoded more efficiently?

Is it possible to remove some protections in some cases?

For example, maybe some use cases don’t care about individual attribution of
application layer messages

34

Malicious Insiders: The Problem

MLS paths are supposed to be
the encryption of a hash chain…

But each recipient can only
verify from a given point upward

So a malicious user can split the
tree

And it will only be visible to a
subset of users (here 4 of 32)

X

H(X)

H2(X)

H3(X)

H4(X)

Y

H(Y)

H2(X)

H3(X)

H4(X)

35

Malicious Insiders: Open Questions

Pretty clear at this point that
ZKPs aren’t feasible (proof?)

Naïve approach to reporting
corruption reveals private
information

Can we provide tools to prove
corruption without revealing
private info?

X

H(X)

H2(X)

H3(X)

H4(X)

Y

H(Y)

H2(X)

H3(X)

H4(X)

36

Transport Interactions
Right now, we basically assume a messaging app’s
delivery infrastructure

Synchronized delivery is not a huge problem

Metadata protection is nice, but server has to
know how to do fanout

What about better stuff?

37

Transport Interactions
For mixnets / more private transports: Is the metadata
protection we have now good enough?

For decentralized transports: How do we
accommodate the need for synchronized delivery?

● Decentralized sync protocols?
● Independent histories?
● Allow forking?

38

New Applications
MLS started with secure messaging apps, but it’s really just an async group AKE

There are other cases where groups need to establish shared keys

WebRTC conferencing, IPTV, IoT pub/sub, SD-WAN, ...

Even more cases where you an async 2-message 1-1 AKE might be handy

ESNI, DNS?, HTTP?, …

39

Grand Unified Theory?
TLS defines a 1-1 AKE

MLS defines a group AKE, thus in particular a 1-1 AKE

Right now, these look rather different

Could we define some unified framework within which both are special cases?

40

Complementary Approaches to Diversity
Noise: Assemble then Prove TLS / MLS: Prove then Profile

✅ ❌
✅

41

And beyond...
42

Past, Present, and Future

43

Emerged from a blend of practical, industry needs and ideas from academia

Now starting to firm up into a protocol that is usable and provable

… including at least four different implementations!

Still a few meaty problems to be solved before we can call it done

… and even more opportunities over the next horizon

44

